The minimal generating space of a polynomial
نویسندگان
چکیده
منابع مشابه
extensions of some polynomial inequalities to the polar derivative
توسیع تعدادی از نامساوی های چند جمله ای در مشتق قطبی
15 صفحه اولGenerating All Minimal Edge Dominating Sets with Incremental-Polynomial Delay
For an arbitrary undirected simple graph G with m edges, we give an algorithm with running time O(m|L|) to generate the set L of all minimal edge dominating sets of G. For bipartite graphs we obtain a better result; we show that their minimal edge dominating sets can be enumerated in time O(m|L|). In fact our results are stronger; both algorithms generate the next minimal edge dominating set wi...
متن کاملDetermination of a Matrix Function in the Form of f(A)=g(q(A)) Where g(x) Is a Transcendental Function and q(x) Is a Polynomial Function of Large Degree Using the Minimal Polynomial
Matrix functions are used in many areas of linear algebra and arise in numerical applications in science and engineering. In this paper, we introduce an effective approach for determining matrix function f(A)=g(q(A)) of a square matrix A, where q is a polynomial function from a degree of m and also function g can be a transcendental function. Computing a matrix function f(A) will be time- consu...
متن کاملOn the Smallest Minimal Blocking Sets in Projective Space Generating the Whole Space
It was conjectured that the smallest minimal point sets of PG(2s, q), q a square, that meet every s-subspace and that generate the whole space are Baer subgeometries PG(2s, √ q). This was shown in 1971 by Bruen for s = 1, and by Metsch and Storme [5] for s = 2. Our main interest in this paper is to prepare a possible proof of this conjecture by proving a strong theorem on line-blocking sets in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 1981
ISSN: 0024-3795
DOI: 10.1016/0024-3795(81)90221-4